Notes on Translating Solitons for Mean Curvature Flow

نویسندگان

چکیده

These notes provide an introduction to translating solitons for the mean curvature flow in \(\mathbf {R}^3\). In particular, we describe a full classification of translators that are complete graphs over domains {R}^2\).

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Translating Solitons of Mean Curvature Flow of Noncompact Spacelike

In this paper, we study the existence, uniqueness and asymptotic behavior of rotationally symmetric translating solitons of the mean curvature flow in Minkowski space. We also study the asymptotic behavior and the strict convexity of general solitons of such flows.

متن کامل

Translating Solutions to Lagrangian Mean Curvature Flow

We prove some non-existence theorems for translating solutions to Lagrangian mean curvature flow. More precisely, we show that translating solutions with an L bound on the mean curvature are planes and that almost-calibrated translating solutions which are static are also planes. Recent work of D. Joyce, Y.-I. Lee, and M.-P. Tsui, shows that these conditions are optimal.

متن کامل

Translating Solitons to Symplectic and Lagrangian Mean Curvature Flows

In this paper, we construct finite blow-up examples for symplectic mean curvature flows and we study properties of symplectic translating solitons. We prove that, the Kähler angle α of a symplectic translating soliton with max |A| = 1 satisfies that sup |α| > π 4 |T | |T |+1 where T is the direction in which the surface translates. Mathematics Subject Classification (2000): 53C44 (primary), 53C...

متن کامل

Mean Curvature Blowup in Mean Curvature Flow

In this note we establish that finite-time singularities of the mean curvature flow of compact Riemannian submanifolds M t →֒ (N, h) are characterised by the blow up of the mean curvature.

متن کامل

Mean curvature flow

Mean curvature flow is the negative gradient flow of volume, so any hypersurface flows through hypersurfaces in the direction of steepest descent for volume and eventually becomes extinct in finite time. Before it becomes extinct, topological changes can occur as it goes through singularities. If the hypersurface is in general or generic position, then we explain what singularities can occur un...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Springer proceedings in mathematics & statistics

سال: 2021

ISSN: ['2194-1009', '2194-1017']

DOI: https://doi.org/10.1007/978-3-030-68541-6_9